Транс­порт ды­ха­тель­ных га­зов.

Око­ло О,3% О2, со­дер­жа­ще­го­ся в ар­те­ри­аль­ной кро­ви боль­шо­го кру­га при нор­маль­ном Ро2, рас­тво­ре­но в плаз­ме. Все ос­таль­ное ко­ли­че­ст­во на­хо­дит­ся в не­проч­ном хи­ми­че­ском со­еди­не­нии с ге­мо­гло­би­ном (НЬ) эрит­ро­ци­тов. Ге­мо­гло­бин пред­став­ля­ет со­бой бе­лок с при­сое­ди­нен­ной к не­му же­ле­зо­со­дер­жа­щей груп­пой. Fе + ка­ж­дой мо­ле­ку­лы ге­мо­гло­би­на со­еди­ня­ет­ся не­проч­но и об­ра­ти­мо с од­ной мо­ле­ку­лой О2. Пол­но­стью на­сы­щен­ный ки­сло­ро­дом ге­мо­гло­бин со­дер­жит 1,39 мл. О2 на 1 г Нb (в не­ко­то­рых ис­точ­ни­ках ука­зы­ва­ет­ся 1,34 мл), ес­ли Fе + окис­лен до Fе +, то та­кое со­еди­не­ние ут­ра­чи­ва­ет спо­соб­ность пе­ре­но­сить О2.

Пол­но­стью на­сы­щен­ный ки­сло­ро­дом ге­мо­гло­бин (НbО2) об­ла­да­ет бо­лее силь­ны­ми ки­слот­ны­ми свой­ст­ва­ми, чем вос­ста­нов­лен­ный ге­мо­гло­бин (Нb). В ре­зуль­та­те в рас­тво­ре, имею­щем рН 7,25, ос­во­бо­ж­де­ние 1мМ О2 из НbО2 де­ла­ет воз­мож­ным ус­вое­ние О,7 мМ Н+ без из­ме­не­ния рН; та­ким об­ра­зом, вы­де­ле­ние О2 ока­зы­ва­ет бу­фер­ное дей­ст­вие.

Со­от­но­ше­ние ме­ж­ду чис­лом сво­бод­ных мо­ле­кул О2 и чис­лом мо­ле­кул, свя­зан­ных с ге­мо­гло­би­ном (НbО2), опи­сы­ва­ет­ся кри­вой дис­со­циа­ции О2 (рис.7). НbО2 мо­жет быть пред­став­лен в од­ной из двух форм: или как до­ля со­еди­нен­но­го с ки­сло­ро­дом ге­мо­гло­би­на (% НbО2), или как объ­ем О2 на 100 мл кро­ви во взя­той про­бе (объ­ем­ные про­цен­ты). В обо­их слу­ча­ях фор­ма кри­вой дис­со­циа­ции ки­сло­ро­да ос­та­ет­ся од­ной и той же.

На­сы­ще­ние тка­ней ки­сло­ро­дом.

Транс­порт O2 из кро­ви в те уча­ст­ки тка­ни, где он ис­поль­зу­ет­ся, про­ис­хо­дит пу­тем про­стой диф­фу­зии. По­сколь­ку ки­сло­род ис­поль­зу­ет­ся глав­ным об­ра­зом в ми­то­хон­д­ри­ях, рас­стоя­ния, на ко­то­рые про­ис­хо­дит диф­фу­зия в тка­нях, пред­став­ля­ют­ся боль­ши­ми по срав­не­нию с об­ме­ном в лег­ких. В мы­шеч­ной тка­ни при­сут­ст­вие ми­ог­ло­би­на, как по­ла­га­ют, об­лег­ча­ет диф­фу­зию O2. Для вы­чис­ле­ния тка­не­во­го Po2 соз­да­ны тео­ре­ти­че­ски мо­де­ли, ко­то­рые пре­ду­смат­ри­ва­ют фак­то­ры, влияю­щие на по­сту­п­ле­ние и по­треб­ле­ние O2, а имен­но рас­стоя­ние ме­ж­ду ка­пил­ля­ра­ми, кро­ва­ток в ка­пил­ля­рах и тка­не­вой ме­та­бо­лизм. Са­мое низ­кое

Po2 ус­та­нов­ле­но в ве­ноз­ном кон­це и на пол­пу­ти ме­ж­ду ка­пил­ля­ра­ми, ес­ли при­нять, что кро­ва­ток в ка­пил­ля­рах оди­на­ко­вый и что они па­рал­лель­ны.