Воздействие различных шумов на ластоногих

Ластоногие способны воспринимать звуки в широком диапазоне. Нижним пределом является частоты 16-20 Гц, которые тюлени одинаково хорошо воспринимают как в воде, так и на суше. На суше параметры слуха у тюленей схожи с человеческими и звуки частотой выше 20 кГц тюлени воспринимают плохо. Но при погружении частотный диапазон расширяется до 55-60 кГц. Также смещается диапазон частот наилучшей восприимчивости, так у кольчатой нерпы он составляет 1-45 кГц, у обыкновенного тюленя 1-32 кГц, у гренландского тюленя 2-23 кГц (King,1964). Именно на данных частотах, из-за короткой длины волны, возможно точное ориентирование на источник звука, которым может быть объект охоты, сородич, либо хищник или иная угроза. Поэтому для тюленей представляет опасность шумы именно на этих частотах. Однако доля звуков данных частот в техногенных шумах невелика, а также звуки на высоких и ультразвуковых частотах обладают значительно меньшей энергией, чем инфразвуки и звуки низких и средних частот, и поэтому распространяются на значительно меньшие расстояния.

Главными источниками высокочастотных и ультразвуковых сигналов являются сонары и гидролокаторы, их излучение характеризуется высокой мощностью, и вблизи источника представляет угрозу для любого организма. Особенно опасны звуки высокочастотных и ультразвуковых диапазонов для китообразных, которые используют эхолокацию. Данные акустические сигналы, во-первых, глушат животных, а во-вторых, создают помехи в работе эхолокационной системы, делая невозможным различать окружающие предметы. Однако, в отличие от китообразных, ластоногие обладают не столь чувствительным слухом, а также не пользуются активной эхолокацией (по крайней мере, эхолокация не доминирует над другими органами чувств у тюленей). Так существует мнение, что способность тюленей различать ультразвуки, является оборонительной адаптацией, против естественных врагов – касаток, которые активно используют эхолокацию (King,1964).

Часть спектра высоких частот (от 800 до 9000 Гц) присутствует в шуме, создаваемом судами (без учета работы эхолотов и сонаров) и промышленными объектами. Реже в данном шуме присутствуют звуки с частотами выше 10 кГц. Данные звуки характеризуются низкой интенсивностью и распространяются на небольшие дистанции. Однако среднечастотные, низкочастотные и инфразвуковые составляющие подобных шумов высоки, особенно инфразвуковые и низкочастотные.

Уровни шума внутри судна и наведённые вибрации корпуса делают необходимым рассматривать его как достаточно мощный источник высокоинтенсивного акустического излучения в окружающую водную среду (ссылка).

Коммерческий флот является главным источником низкочастотных звуков (5 - 500 Гц) в мировом океане. Проходящие в отдалении суда увеличивают уровень фонового шума на больших площадях мирового океана. Звуки, издаваемые отдельными судами, часто невозможно различить ни во времени, ни в пространстве среди шумов, издаваемых в отдалении судами. Суда создают звуки при работе гребных винтов, энергетических установок и благодаря гидравлическим потокам воды, омывающей корпус корабля. В целом суда издают целый ряд шумов в частотах от 10 Гц до 10 кГц. Последние исследования уровней шумов, издаваемых малыми скоростными катерами, показывают, что уровни пиков их спектральной плотности находятся в диапазоне 350-1 200 Гц и 145-150 дБ на расстоянии 1 м (Bartlett and Wilson, 2002). Richardson et. al. (1995) указывают в своей работ результаты замера уровня шумов в 162 дБ на частоте 630 Гц (на расстоянии 1 м), производимых буксиром и баржей, двигающимся со скоростью 18 км/час, а также уровни шума, производимого большим танкером: около 177 дБ (на расстоянии 1 м) 1/3 октавной полосе с центральной частотой 100 Гц. Большие суда имеют более мощные двигательные установки и их моторы и гребные винты медленнее вращаются. Большая площадь корпуса судна более эффективно проводит шум от работы механизмов через обшивку в морскую среду. Поэтому практика показывает, что чем больше судно, тем выше уровень производимых шумов и тем ниже преобладающий диапазон частот звуков. К тому же при увеличении скорости движения уровень интенсивности производимых шумов на любом конкретном судне увеличивается.

Перейти на страницу:
1 2 3 4 5 6